2,329,134 research outputs found

    Optimal Bandwidth and Power Allocation for Sum Ergodic Capacity under Fading Channels in Cognitive Radio Networks

    Full text link
    This paper studies optimal bandwidth and power allocation in a cognitive radio network where multiple secondary users (SUs) share the licensed spectrum of a primary user (PU) under fading channels using the frequency division multiple access scheme. The sum ergodic capacity of all the SUs is taken as the performance metric of the network. Besides all combinations of the peak/average transmit power constraints at the SUs and the peak/average interference power constraint imposed by the PU, total bandwidth constraint of the licensed spectrum is also taken into account. Optimal bandwidth allocation is derived in closed-form for any given power allocation. The structures of optimal power allocations are also derived under all possible combinations of the aforementioned power constraints. These structures indicate the possible numbers of users that transmit at nonzero power but below their corresponding peak powers, and show that other users do not transmit or transmit at their corresponding peak power. Based on these structures, efficient algorithms are developed for finding the optimal power allocations.Comment: 28 pages, 6 figures, submitted to the IEEE Trans. Signal Processing in June 201

    Optimization models of the supply of power structures’ organizational units with centralized procurement

    Get PDF
    Management of the state power structures’ organizational units for materiel and technical support requires the use of effective tools for supporting decisions, due to the complexity, interdependence, and dynamism of supply in the market economy. The corporate nature of power structures is of particular interest to centralized procurement management, as it provides significant advantages through coordination, eliminating duplication, and economy of scale. This article presents optimization models of the supply of state power structures’ organizational units with centralized procurement, for different levels of simulated materiel and technical support processes. The models allow us to find the most profitable options for state power structures’ organizational supply units in a centre-oriented logistics system in conditions of the changing needs, volume of allocated funds, and logistics costs that accompany the process of supply, by maximizing the provision level of organizational units with necessary material and technical resources for the entire planning period of supply by minimizing the total logistical costs, taking into account the diverse nature and the different priorities of organizational units and material and technical resources

    Acoustic energy transmission in cast iron pipelines

    Get PDF
    In this paper we propose acoustic power transfer as a method for the remote powering of pipeline sensor nodes. A theoretical framework of acoustic power propagation in the ceramic transducers and the metal structures is drawn, based on the Mason equivalent circuit. The effect of mounting on the electrical response of piezoelectric transducers is studied experimentally. Using two identical transducer structures, power transmission of 0.33 mW through a 1 m long, 118 mm diameter cast iron pipe, with 8 mm wall thickness is demonstrated, at 1 V received voltage amplitude. A near-linear relationship between input and output voltage is observed. These results show that it is possible to deliver significant power to sensor nodes through acoustic waves in solid structures. The proposed method may enable the implementation of acoustic - powered wireless sensor nodes for structural and operation monitoring of pipeline infrastructure

    Signatures of Emerging Subsurface Structures in Acoustic Power Maps

    Full text link
    We show that under certain conditions, subsurface structures in the solar interior can alter the average acoustic power observed at the photosphere above them. By using numerical simulations of wave propagation, we show that this effect is large enough for it to be potentially used for detecting emerging active regions before they appear on the surface. In our simulations, simplified subsurface structures are modeled as regions with enhanced or reduced acoustic wave speed. We investigate the dependence of the acoustic power above a subsurface region on the sign, depth, and strength of the wave speed perturbation. Observations from the Solar and Heliospheric Observatory/Michelson Doppler Imager (SOHO/MDI) prior and during the emergence of NOAA active region 10488 are used to test the use of acoustic power as a potential precursor of magnetic flux emergence.Comment: 7 pages, 5 figures, accepted for publication in Solar Physics on 21 March 201
    corecore